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Introduction
Shallow syntax in NLP Discontinuity in Dutch 

➤ Plenty of work discussing LMs 
ability to model syntax 

➤ English NLP resources 
typically context-free as 
English has shallow syntax

Discontinuous Constituency and BERT:
A Case Study of Dutch

Konstantinos Kogkalidis� and Gijs Wijnholds�

Utrecht Institute of Linguistics OTS, Utrecht University
k.kogkalidis,g.j.wijnholds@uu.nl

Abstract

In this paper, we set out to quantify the syntac-
tic capacity of BERT in the evaluation regime
of non-context free patterns, as occurring in
Dutch. We devise a test suite based on a mildly
context-sensitive formalism, from which we
derive grammars that capture the linguistic phe-
nomena of control verb nesting and verb raising.
The grammars, paired with a small lexicon, pro-
vide us with a large collection of naturalistic
utterances, annotated with verb-subject pair-
ings, that serve as the evaluation test bed for
an attention-based span selection probe. Our
results, backed by extensive analysis, suggest
that the models investigated fail in the implicit
acquisition of the dependencies examined.

1 Introduction

Assessing the ability of large-scale language mod-
els to automatically acquire aspects of linguistic
theory has become a prominent theme in the litera-
ture ever since the inception of BERT (Devlin et al.,
2019) and its many variants, largely due to their
unanticipated performance. Standard practice in-
volves attaching BERT to a shallow neural model of
low parametric complexity, and training the latter
at detecting various linguistic patterns of interest,
revealing in the process the amount to which they
are encoded within BERT’s representations. The
consensus points to BERT-like models having some
capacity for syntactic understanding (Rogers et al.,
2020). Their contextualized representations encode
structural hierarchies (Lin et al., 2019) that can be
projected into parse structures, using linear (He-
witt and Manning, 2019) or hyperbolic transforma-
tions (Chen et al., 2021), from which one can even
obtain an accurate reconstruction of the underlying
constituency tree (Vilares et al., 2020).

Despite their broadening scope, a latent bias per-
sists in the insights provided by the probing liter-
ature, due to its focus being, by default, on En-

� Equal contribution.

glish. English, albeit boasting a rich collection of
evaluation resources, is characterized by a simple
grammar with relatively few complications over
the syntactic and morphological axes. Specifically
when it comes to syntax, English lies in close prox-
imity to a context-free language, a class character-
ized by its low rank in terms of formal complexity
and expressive power (Chomsky, 1956). Perhaps
more importantly, several commonly used evalua-
tion test beds, including the Penn Treebank (Klein
and Manning, 2001), are in themselves context-
free, muddying the territory between probing for
acquired syntactic generalization and arbitrating
pattern extraction. As such, claims about the syn-
tactic skills of language models should not be as-
sumed to freely transfer between languages (and,
in some cases, even datasets).

In this paper, we seek to evaluate BERT in the
face of patterns that go beyond context-freeness.
We employ a mildly context-sensitive grammar for-
malism to generate complex patterns that do not
naturally occur in English. We choose instead to
experiment on Dutch, a language long-argued to
be non-context free, due it its capacity for exhibit-
ing an arbitrary number of cross-serial dependen-
cies. In Dutch, cross-serial dependencies arise in
sentences where verbs form clusters, causing their
respective dependencies with their arguments to in-
tersect when drawn on a plane: Figure 1 portrays an
adaptation of the example of Bresnan et al. (1982).

... dat Jan Marie de kinderen ziet leren fietsen
... that Jan Marie the children see teach cycle

‘...that John sees Mary teach the kids to cycle’

Figure 1: Illustration of crossing dependencies in Dutch.

To that end, we first identify two well-studied con-
structions in Dutch that commonly involve cross-

How do language models perform in the presence of discontinuity?

1. We use a mildly context-sensitive grammar formalism, MCFG, to generate 
two novel annotated datasets. These datasets model verb-subject 
dependencies in a  discontinuous setting. 

2. We pretrain a probe on top of frozen Dutch BERT models, training it to 
recognize verb-subject dependencies in general. 

3. We evaluate the probe on our datasets, and perform a detailed inspection of 
the experimental results.

Generating Test Data: Verb Raising

Example 

➤ Verb-noun dependencies are labelled during generation, allowing us to percolate labels 
down through the MCFG rules 

➤ Per abstract parse tree, we sample and generate a fixed number of sentences

S(xyzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) (A1)
S(xyzuw1vw2) �� NP(x) TV(y) NP(z) NP(u) CV(v) VC(w1, w2) (A2)

VC(x, y) �� TE(x) INFiv(y) (A3)
VC(zx, y) �� TE(x) INFtv(y) NP(z) (A4)

VC(xy, zu0u1) �� NP(x) TE(y) INFc(z) VC(u0, u1) (A5)
VC(xyu, zv1v2) �� NP(x) TE(y) INFc(z) CV(u) VC(v1, v2) (A6)

S(xyzvu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Am
1 )

S(vyxzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2) �� PREF(x) SUB(y1, y2) (B1)
SUB(x, y) �� NP(x) INFiv(y) (B2)

SUB(xy, z) �� NP(x) NP(y) INFtv(z) (B3)
SUB(xz, yu) �� NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Nv, Nn � N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-
cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules

S(xyzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) (A1)
S(xyzuw1vw2) �� NP(x) TV(y) NP(z) NP(u) CV(v) VC(w1, w2) (A2)

VC(x, y) �� TE(x) INFiv(y) (A3)
VC(zx, y) �� TE(x) INFtv(y) NP(z) (A4)
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VC(xyu, zv1v2) �� NP(x) TE(y) INFc(z) CV(u) VC(v1, v2) (A6)

S(xyzvu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Am
1 )

S(vyxzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2) �� PREF(x) SUB(y1, y2) (B1)
SUB(x, y) �� NP(x) INFiv(y) (B2)

SUB(xy, z) �� NP(x) NP(y) INFtv(z) (B3)
SUB(xz, yu) �� NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.
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natively, when the two occur at different depths, a
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that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
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populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
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noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
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sider two variations for each of the first two rules

MCFG 

Sentences

1 Sentence examples

(a) [de student] belooft de docent [te vertrekken]
(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave

(a) [de student] [vraagt] [de docent] [de opdrachten] [te maken]

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

(a) de student belooft de docent de opdracht te maken
(b) de student vraagt de docent de opdracht te maken

(c) de student die de docent belooft om de opdracht te maken
(d) de student belooft de docent de opdracht te maken
(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht

1

Syntax oriented

Generating Test Data: Control Verbs

Example

➤ The understood subject of a verb depends on choice of control verb 

➤ Adding causative verbs may flip the understood subject again
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1 Sentence examples
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(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht
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scheme may defer the decision by propagating verb
indices down through non-nominal constituents
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MCFG 

Lexicon oriented

➤ BERTje (de Vries et al. 2019) and RobBERT (Delobelle et al. 2020)

N1 N2 N3

V1 x

V2 x

N1        V1          N2               N3          V2

BERT (frozen)

Global Attention (Span Aggregation)

�

Sentences

1 Sentence examples
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(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave
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(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]
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1

Designing the Probe

Training the Probe

➤ Parse DAGs extracted from Lassy-Small, a gold standard corpus of written Dutch 
(Van Noord 2013) 

➤ These contain both continuous and discontinuous verb-subject dependencies
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The student goes home
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Results
BERT strugglesGeneral results 

Specific results

➤ Tree depth impacts accuracy, despite 
training on sentences, not trees 

➤ Specific rules may introduce 
complexity, that the model can’t 
deal with

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,
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when analyzing model performance. To ensure nat-
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4.2 Results
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Summary
➤ Discontinuous verb-subject dependencies are not inherently captured by 

contextualized (Dutch) BERT/RoBERTa representations 

➤ This was shown by training a probe on Lassy, evaluating on MCFG-generated data 

➤ Easily extendable by writing more grammars, and training different probes -> work in 
progress, see the poster of our students!

Paper, data, code:

1 for verb spans, 1 for noun spans

Sparse Attention

(Masked) attention weights

Findings of

github.com/gijswijnholds/discontinuous-probing

Website: https://compositioncalculus.sites.uu.nl

Team:

Michael Moortgat Giuseppe Greco Gijs Wijnholds Kokos Kogkalidis Adriana Correia⇤

PI Postdoc Postdoc PhD PhD



A bit of background

I want to integrate of the mathematical structures one finds in logic and linguistics, with
state-of-the-art machine learning techniques in Natural Language Processing (NLP).
The goal is to learn how to characterise natural language structures in a machine-
learnable way, grounded in linguistic theory, with explainability at the forefront.

Compositional Distributional Semantics Coecke et al. [2010] Using category theory
to unify grammar and meaning
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A bit of background

A shift to the applied
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A Central Question to Ask

I Do language models have any linguistic ‘understanding’?



Motivation: discontinuities

Probing

I Extracting information from a language model by attaching a small task-specific
neural network.

I Has been shown to reveal some syntactic understanding Rogers et al. [2020],
Hewitt and Manning [2019]

I A latent bias persists because of focus on English and resources being context
free/grammatically simple.
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I Extracting information from a language model by attaching a small task-specific
neural network.

I Has been shown to reveal some syntactic understanding Rogers et al. [2020],
Hewitt and Manning [2019]

I A latent bias persists because of focus on English and resources being context
free/grammatically simple.

Discontinuous patterns results about linguistic ‘understanding’ may not transfer be-
tween languages:

Generating Test Data: Verb Raising

Crossing Dependencies

Discontinuous Constituency and BERT: A Case Study of Dutch
 Konstantinos Kogkalidis & Gijs Wijnholds
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How do language models perform in the presence of discontinuity?

How to investigate LMs syntactic capacity in discontinuous settings:

Results

“A composition calculus for vector- based semantic 
modelling with a localization for Dutch” (360-89-070) 

BERT struggles

Data + Code: github.com/gijswijnholds/discontinuous-probing

Shallow syntax in NLP Discontinuity in Dutch 

➤ Plenty of work discussing 
LMs ability to model syntax 

➤ English NLP resources 
typically context-free as 
English has shallow syntax

Discontinuous Constituency and BERT:
A Case Study of Dutch

Konstantinos Kogkalidis� and Gijs Wijnholds�

Utrecht Institute of Linguistics OTS, Utrecht University
k.kogkalidis,g.j.wijnholds@uu.nl

Abstract

In this paper, we set out to quantify the syntac-
tic capacity of BERT in the evaluation regime
of non-context free patterns, as occurring in
Dutch. We devise a test suite based on a mildly
context-sensitive formalism, from which we
derive grammars that capture the linguistic phe-
nomena of control verb nesting and verb raising.
The grammars, paired with a small lexicon, pro-
vide us with a large collection of naturalistic
utterances, annotated with verb-subject pair-
ings, that serve as the evaluation test bed for
an attention-based span selection probe. Our
results, backed by extensive analysis, suggest
that the models investigated fail in the implicit
acquisition of the dependencies examined.

1 Introduction

Assessing the ability of large-scale language mod-
els to automatically acquire aspects of linguistic
theory has become a prominent theme in the litera-
ture ever since the inception of BERT (Devlin et al.,
2019) and its many variants, largely due to their
unanticipated performance. Standard practice in-
volves attaching BERT to a shallow neural model of
low parametric complexity, and training the latter
at detecting various linguistic patterns of interest,
revealing in the process the amount to which they
are encoded within BERT’s representations. The
consensus points to BERT-like models having some
capacity for syntactic understanding (Rogers et al.,
2020). Their contextualized representations encode
structural hierarchies (Lin et al., 2019) that can be
projected into parse structures, using linear (He-
witt and Manning, 2019) or hyperbolic transforma-
tions (Chen et al., 2021), from which one can even
obtain an accurate reconstruction of the underlying
constituency tree (Vilares et al., 2020).

Despite their broadening scope, a latent bias per-
sists in the insights provided by the probing liter-
ature, due to its focus being, by default, on En-

� Equal contribution.

glish. English, albeit boasting a rich collection of
evaluation resources, is characterized by a simple
grammar with relatively few complications over
the syntactic and morphological axes. Specifically
when it comes to syntax, English lies in close prox-
imity to a context-free language, a class character-
ized by its low rank in terms of formal complexity
and expressive power (Chomsky, 1956). Perhaps
more importantly, several commonly used evalua-
tion test beds, including the Penn Treebank (Klein
and Manning, 2001), are in themselves context-
free, muddying the territory between probing for
acquired syntactic generalization and arbitrating
pattern extraction. As such, claims about the syn-
tactic skills of language models should not be as-
sumed to freely transfer between languages (and,
in some cases, even datasets).

In this paper, we seek to evaluate BERT in the
face of patterns that go beyond context-freeness.
We employ a mildly context-sensitive grammar for-
malism to generate complex patterns that do not
naturally occur in English. We choose instead to
experiment on Dutch, a language long-argued to
be non-context free, due it its capacity for exhibit-
ing an arbitrary number of cross-serial dependen-
cies. In Dutch, cross-serial dependencies arise in
sentences where verbs form clusters, causing their
respective dependencies with their arguments to in-
tersect when drawn on a plane: Figure 1 portrays an
adaptation of the example of Bresnan et al. (1982).

... dat Jan Marie de kinderen ziet leren fietsen
... that Jan Marie the children see teach cycle

‘...that John sees Mary teach the kids to cycle’

Figure 1: Illustration of crossing dependencies in Dutch.

To that end, we first identify two well-studied con-
structions in Dutch that commonly involve cross-

Example

➤ The understood subject of a verb depends on choice of control verb 

➤ Adding causative verbs may flip the understood subject again

Sentences

1 Sentence examples

(a) [de student] belooft de docent [te vertrekken]
(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave

(a) [de student] [vraagt] [de docent] [de opdrachten] [te maken]

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

(a) de student belooft de docent de opdracht te maken
(b) de student vraagt de docent de opdracht te maken

(c) de student die de docent belooft om de opdracht te maken
(d) de student belooft de docent de opdracht te maken
(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht

1
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Designing the Probe

➤ Parse DAGs extracted from Lassy-Small, a gold standard corpus of written Dutch 
(Van Noord 2013) 

➤ These contain both continuous and discontinuous verb-subject dependencies
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(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht
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1. We use a mildly context-sensitive grammar formalism, MCFG, to 
generate two novel annotated datasets. 
These datasets model verb-subject dependencies in a  discontinuous 
setting. 

2. We pretrain a probe on top of frozen Dutch BERT models, training it to 
recognize verb-subject dependencies in general. 

3. We evaluate the probe on our datasets, and perform a detailed inspection 
of the experimental results.

Generating Test Data: Verb Raising

Example 

➤ Verb-noun dependencies are labelled during generation, allowing us to percolate labels 
down through the MCFG rules 

➤ Per abstract parse tree, we sample and generate a fixed number of sentences

S(xyzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) (A1)
S(xyzuw1vw2) �� NP(x) TV(y) NP(z) NP(u) CV(v) VC(w1, w2) (A2)

VC(x, y) �� TE(x) INFiv(y) (A3)
VC(zx, y) �� TE(x) INFtv(y) NP(z) (A4)

VC(xy, zu0u1) �� NP(x) TE(y) INFc(z) VC(u0, u1) (A5)
VC(xyu, zv1v2) �� NP(x) TE(y) INFc(z) CV(u) VC(v1, v2) (A6)

S(xyzvu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Am
1 )

S(vyxzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2) �� PREF(x) SUB(y1, y2) (B1)
SUB(x, y) �� NP(x) INFiv(y) (B2)

SUB(xy, z) �� NP(x) NP(y) INFtv(z) (B3)
SUB(xz, yu) �� NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Nv, Nn � N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-
cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules
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complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
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verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
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(b) de student vraagt de docent de opdracht te maken
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(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
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General results 

Specific results

➤ Tree depth impacts accuracy, 
despite training on 
sentences, not trees 

➤ Specific rules may introduce 
complexity, that the model 
can’t deal with

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring
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under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring

➤ Discontinuous verb-subject dependencies are not inherently captured by 
contextualized (Dutch) BERT/RoBERTa representations 

➤ This was shown by training a probe on Lassy, evaluating on MCFG-generated 
data 

➤ Easily extendable by writing more grammars, and training different probes -> 
work in progress
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S(vyxzu1u2) �� NP(x) TV(y) NP(z) VC(u1, u2) ADV(v) (Ai
1)

...
(a) 2-MCFG for control verbs.

S(xy1y2) �� PREF(x) SUB(y1, y2) (B1)
SUB(x, y) �� NP(x) INFiv(y) (B2)

SUB(xy, z) �� NP(x) NP(y) INFtv(z) (B3)
SUB(xz, yu) �� NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Nv, Nn � N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-
cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules

MCFG 

Lexicon oriented

Syntax oriented

Generating samples Using an MCFG + annotations indicating verbs and their cor-
responding subjects:
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1 )
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...
(a) 2-MCFG for control verbs.

S(xy1y2) �� PREF(x) SUB(y1, y2) (B1)
SUB(x, y) �� NP(x) INFiv(y) (B2)

SUB(xy, z) �� NP(x) NP(y) INFtv(z) (B3)
SUB(xz, yu) �� NP(x) RV(y) SUB(z, u) (B4)

(b) 2-MCFG for verb raising.

Figure 2: 2-MCFGs capturing the phenomena of Section 3.1.

3.2 Data generation

For our data generation needs, we design a custom
implementation of an MCFG enriched with two
added functionalities. First, we define two sets
Nv, Nn � N that specify which non-terminals
correspond to verb- and noun phrases respectively.
Every occurrence of a marked non-terminal indi-
cates a unique phrase in the final yield, which we
can trace by traversing the derivation tree. This,
in turn, gives us the possibility of assigning one
or more labels to the constituent substrings that
make up a sentence, according to which phrase(s)
they were part of, even in the case of discontinu-
ous and/or overlapping substrings. Additionally,
we decorate MCFG rules with subject inheritance
schemes. In the simplest case, a scheme may di-
rectly specify the subject noun of a verb, if the non-
terminals of both occur on the same rule, i.e. they
inhabit the same depth of the generation tree. Alter-
natively, when the two occur at different depths, a
scheme may defer the decision by propagating verb
indices down through non-nominal constituents
that will contain the matching subject, but at an
arbitrary nesting depth (see Figure 3 for an exam-
ple). Lexical constants for primitive categories are
populated by means of an automatically compiled
but manually verified lexicon.

3.3 Grammars

We use the above framework to instantiate distinct
grammars for both syntactic phenomena of interest.
Note that the grammars are not purposed for the
construction of exhaustive or accurate analyses of
the phrase structures considered, but rather for the
controlled generation and annotation of suitable
samples.

Control Verb grammar Our first grammar,
given in Figure 2a, models control verb nesting.
The grammar accounts for the mobility of verbal
complements by encoding them as non-terminals
of multiplicity 2, making the grammar a 2-MCFG.
We have two constructors for sentences that com-
bine two noun phrases and a transitive verb with a
verbal complement (A1), optionally under the con-
text of a causative verb and its direct object (A2). In
the base case, verbal complements are constructed
with te and either an intransitive infinitive (A3) or
a transitive infinitive and its object (A4). In the
inductive case, a verbal complement can contain
a control verb in infinitival form together with a
noun phrase and another verbal complement, either
alone or with a causative (A5 and A6). To increase
the variance of generated samples, we also con-
sider two variations for each of the first two rules

Example

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

I Can a language model draw the links?



Understanding verb clusters



A Case Study (or two): Dutch verb clusters

Verb clusters arise in Dutch embedded clauses, when verb raisers are stacked, passing
their subject/object to the embedded infinitive.

Raising example 1 He will
h
say something to her

i

Hij
su

zal
vr

h
haar
iobj

iets
dobj

zeggen
inf

i
vc



A Case Study (or two): Dutch verb clusters

Verb clusters arise in Dutch embedded clauses, when verb raisers are stacked, passing
their subject/object to the embedded infinitive.

Raising example 1 He will
h
say something to her

i

Hij
su

zal
vr

h
haar
iobj

iets
dobj

zeggen
inf

i
vc

Raising example 2 He will
h
want

⇥
to say something to her

⇤i

Hij
su

zal
vr

h⇥
haar
iobj

iets
dobj

⇤
willen

vr

⇥
zeggen

inf

⇤i
vc

I zullen, willen: obligatory verb raiser



A Case Study (or two): subject flipping

Raising example 2 He will
h
want

⇥
to say something to her

⇤i

Hij
su

zal
vr

h⇥
haar
iobj

iets
dobj

⇤
willen

vr

⇥
zeggen
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⇤i
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Raising example 3 He will
h
want

⇥
to let her [say something ]

⇤i

Hij
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h⇥
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dobj

⇤
[iets
dobj

] willen
vr

⇥
laten

vr

⇤
[zeggen

inf

⇤i
vc

I zullen, willen: obligatory verb raiser

I laten: obligatory verb raiser, subject flipper



A Case Study (or two): raising versus extraposition

Extraposition vs raising (I see that) he tries
h
to defeat her

i

(Ik zie dat)Extraposition hij
su

probeert
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inf

]vc

(Ik zie dat)Raising
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A Case Study (or two): raising versus extraposition

Extraposition vs raising (I see that) he tries
h
to defeat her

i

(Ik zie dat)Extraposition hij
su

probeert
ext

[haar
dobj

te verslaan
inf

]vc

(Ik zie dat)Raising
hij
su

h
haar
dobj

i
vc probeert

vr

h
te verslaan

inf

i
vc

Control verbs (I see that) he asks/promises us to defeat her

(Ik zie dat) hij
su

ons
iobj

vraagt/dwingt
vraagt h

haar
dobj

te verslaan
inf

i
vcbelooft

ctrl



A Case Study (or two): classifying verbal categories

Raising, Extraposition, Infinitives

Doing it the Diamond Way: Populating the lexicon

The lexicon

Category Description Examples

INF0 intransitive infinitive vertrekken, stemmen, verliezen, ...
INF1 transitive infinitive with inanimate object zeggen, begrijpen, merken, ...
INF1A transitive infinitive, animate object ontmoeten, bedanken, kennen, ...

IVR0 obligatory verb raiser willen, zullen, moeten, ...
IVR1 obligatory verb raiser, subject flipper laten, doen
IVR2 non-obligatory verb raiser proberen, weigeren, trachten, ...

INF2 extraposition proberen, weigeren, trachten, ...
INF3 extraposition, object control verzoeken, dwingen, verplichten, ...
INF4 extraposition, subject control beloven, verzekeren, zweren, ...

OBJ1A animate direct object Karin, Wouter, ...
OBJ1I inanimate direct object iets, veel, een ding, ...
OBJ2 indirect object Karin, Wouter, ...

Sources

I Verbs sampled from Algemene Nederlandse Spraakkunst (ans.ruhosting.nl)



Probing pt. 1



Probing Discontinuity

Goal Setting up a general probing model that recognizes verb-subject dependencies,
to evaluate whether Dutch language models contain lexical knowledge about control
verbs, and whether they are invariant under word order permutations in the case of
verb raising.

The setup

1. Design a probing model that can recognise verb-subject dependencies,

2. Gather appropriate training data,

3. Generate test data in a controlled/naturalistic way and test.

References

I Konstantinos Kogkalidis and Gijs Wijnholds. Discontinuous Constituency and
BERT: A Case Study of Dutch. Findings of ACL 2022.

I DYI: https://github.com/gijswijnholds/discontinuous-probing



Probe design

Probe DesignDESIGNING THE PROBE

➤ BERTje (de Vries et al. 2019) and RobBERT (Delobelle et al. 2020)

N1 N2 N3

V1 x

V2 x

N1        V1          N2               N3          V2

BERT (frozen)

Global Attention (Span Aggregation)

Sparse Attention �

Sentences

1 Sentence examples

(a) [de student] belooft de docent [te vertrekken]
(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave

(a) [de student] [vraagt] [de docent] [de opdrachten] [te maken]

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

(a) de student belooft de docent de opdracht te maken
(b) de student vraagt de docent de opdracht te maken

(c) de student die de docent belooft om de opdracht te maken
(d) de student belooft de docent de opdracht te maken
(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht

1

1 for verb spans, 1 for noun spans

(Masked) attention weights

The student asks the teacher to do the exercises



Training the probe

Lassy-Small a gold standard dataset of written Dutch with ca. 65k sentences, both
continuous and discontinuous verb-subject dependencies Van Noord et al. [2013]

Training Data

Lassy-Small is a gold standard dataset of written Dutch, containing ca. 65k sen-
tences, that include both continuous and discontinuous verb-subject dependencies:

TRAINING THE PROBE

➤ Parse DAGs extracted from Lassy-Small, a gold standard corpus of written Dutch (Van 
Noord 2013) 

➤ These contain both continuous and discontinuous verb-subject dependencies
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Example DAGs
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Example DAGs

Models BERTje de Vries et al. [2019], RobBERT Delobelle et al. [2020]



Probing attempt #1

Modelling discontinuities We use a mildly context sensitive grammar formalism, Mul-
tiple Context Free Grammar, to generate test samples.

Syntax vs. lexicon One grammar for verb raising constructions, a separate one for
control verbs:

Sentences

1 Sentence examples

(a) [de student] belooft de docent [te vertrekken]
(b) de student vraagt [de docent] [te vertrekken]

(EN) the student promises/asks the teacher to leave

(a) [de student] [vraagt] [de docent] [de opdrachten] [te maken]

(a) de docent ziet [de student] [de hond] [de eend] de oefeningen [helpen] [leren] [eten]

(EN) the teacher sees [the student] [help] [the dog] [teach] [the duck] [to eat] the exercises

(a) de docent ziet [de student] [de collega] [de professor] de oefeningen [helpen] [leren] [maken]

(EN) the teacher sees [the student] [help] [the colleague] [teach] [the professor] [to do] the exercises

The student goes home

The student promises to leave

(a) de student belooft de docent de opdracht te maken
(b) de student vraagt de docent de opdracht te maken

(c) de student die de docent belooft om de opdracht te maken
(d) de student belooft de docent de opdracht te maken
(e) de docent belooft de student de opdracht te maken

(f ) paper that Bob rejected without reading p (immediately)
(g) *window that Bob sleeps without closing

(h) *student die de docent belooft zonder te begrijpen de opdracht te maken
(i) student die de docent belooft de opdracht zonder te begrijpen te maken
(j ) student die de docent belooft de opdracht te maken zonder te begrijpen
(k) *student die de docent belooft zonder te begrijpen te maken de opdracht

1

Validation vs test results While the prober performs very well, the test sets are
challenging:

Results

Validation vs test results The prober works fine, but our generated test sets are very
challenging:

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX

1 AX
2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1

RobBERT 73 52.8 42.4 35.9 58.3 47.2 38.8 93.6 58.1 41.2 19.6 21 17

(a) Control Verb Grammar
# Nouns Tree Depth Rule

Model 2 3 4 5 2 3 4 5 6 B2 B3 B4

BERTje 75.6 52.4 33.5 25.5 92.2 66.4 40.5 29 23 53.4 53.8 36.7

RobBERT 46.3 37.2 24.5 11.4 65.6 36.9 33.6 19.4 12.6 89.1 24.3 12.9

(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring

Investigating further Because we are using a grammar that generates syntax trees,
we can inspect the results, filtering by the complexity of the generated sentences:

# Nouns Tree Depth Rule
Model 2 3 4 5 2 3 4 AX
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2 A3 A4 A5 A6

BERTje 81.1 58.8 50.5 42.9 61.8 52.7 46.8 100 67 43.1 34.6 36.1 27.1
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(b) Verb Raising Grammar

Table 1: Seed-averaged accuracy scores for the two grammars of Section 3.3, grouped by various parameters. The
X superscript denotes inclusion and aggregation of the adverbial modifier variants for the corresponding rules.

of Augustinus (2015): we gather 9 subject- and
33 object-control verbs, 2 causatives and 7 raising
verbs. A comprehensive set of around 10 000 gen-
dered nouns (the ones that have de as their article)
is finally obtained from the Algemeen Nederlands
Woordenboek.4 In the verb raising grammar, we
trigger subordination by prefixing generated ex-
pressions with the string Iemand ziet (‘somebody
sees’).

From each generated abstract tree, we obtain 10
syntactically identical sentences that vary only in
their meaning by performing controlled sampling
over the lexicon; the very large product space of
constants guarantees sample uniqueness. This pa-
rameterization means we can inspect and group
samples on the basis of either their surface form
or their underlying tree, a property that will come
when analyzing model performance. To ensure nat-
urality and consistency in the model’s input, we
capitalize and punctuate generated sentences in a
final post-processing step.

4.2 Results

The trained probes are tested on our generated data,
yielding a prediction for every verb occurrence. For
each model, we report the seed-averaged accuracy
on each experiment in Table 2: test performance
is substantially lower than in the validation bench-
marks.

Model Lassy Control Raising

BERTje 97.6 48 43.1

RobBERT 92.5 40.6 29.2

Table 2: Model accuracy on the validation data (Lassy)
versus the test data (Control, Raising).

4https://anw.ivdnt.org

To facilitate analysis, we group predictions ac-
cording to their context, namely (i) number of noun
phrases in the sentence (classification targets), (ii)
maximal depth of the underlying abstract syntax
tree and (iii) production rule, and aggregate them
into accuracy scores, presented in Table 1. This
breakdown suggests that model performance re-
mains passable for the easier portion of the dataset,
but degrades quickly as the difficulty of the task
increases; models have a harder time associating a
verb to its subject as sentences get longer and more
complicated. The over-representation of harder-
samples due to the dominance of deeper abstract
syntax trees then serves to explain the striking per-
formance decline.

Control Verbs Focusing on the control gram-
mar first, we remark that both models consistently
score above the random baseline (i.e. 1 divided
by the number of classification targets), seemingly
indicating that some notion of semantic compre-
hension perseveres in the presence of control verb
nestings. Grouping scores by rule is revealing: the
main clause subject is (almost) always correctly de-
tected, regardless of nestedness of the co-occurring
complement and unperturbed by the presence of
word-order variations due to modifiers (AX

1 ). Ver-
bal complements and causatives, on the other hand,
are more often than not incorrectly analyzed, even
in the simplest cases of a bare infinitive in isola-
tion (A3), or a causative occurring at the topmost
branch of the tree (AX

2 ).
To procure an explanation for this discrepancy,

we start by measuring accuracy in verbs occurring
under subject- and object control scopes separately.
The remarkably low results hint that models strug-
gle with both kinds of control, while indicating
the presence of an implicit bias slightly favouring

A downside because the grammar is rule-based, we need to write complex specifica-
tions of how subjects are inherited by verbal complements.
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A user-friendly format: Natural Deduction

Structures, sequents Judgements � ` A with A a formula, � a structure:

�, � ::= A | � · �

Axiom, logical rules For the base logic, we have the axiom A ` A and as logical
inference rules, for each connective an elimination rule and an introduction rule, e.g.

� ` A � ` A\B

� · � ` B
\E

A · � ` B
� ` A\B

\I



A user-friendly format: Natural Deduction

Structures, sequents Judgements � ` A with A a formula, � a structure:

�, � ::= A | � · �

Axiom, logical rules For the base logic, we have the axiom A ` A and as logical
inference rules, for each connective an elimination rule and an introduction rule, e.g.

� ` A � ` A\B

� · � ` B
\E

A · � ` B
� ` A\B

\I

Example in steno format

the

np/n
temperature

n

the · temperature ` np
/E

rises

np\s

(the · temperature) · rises ` s
\E

Notation: �[�] for a structure � containing a substructure �



Control operators

The need for control languages exhibit phenomena that seem to require a form of

reordering, restructuring, copying

The logical answer Structures �, � ::= A | h�i | � · �

h�i ` A

� ` 2A
2I

� ` 2A
h�i ` A

2E

� ` A
h�i ` }A

}I
� ` }A �[hAi] ` B

�[�] ` B
}E
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The need for control languages exhibit phenomena that seem to require a form of

reordering, restructuring, copying

The logical answer Structures �, � ::= A | h�i | � · �

h�i ` A

� ` 2A
2I

� ` 2A
h�i ` A

2E

� ` A
h�i ` }A

}I
� ` }A �[hAi] ` B

�[�] ` B
}E

Structure global rules ; } controlled restricted versions, e.g.

A⇧ : (A • B) • }C �! A • (B • }C)

C⇧ : (A • B) • }C �! (A • }C) • B



Control operators

The need for control languages exhibit phenomena that seem to require a form of

reordering, restructuring, copying

The logical answer Structures �, � ::= A | h�i | � · �

h�i ` A

� ` 2A
2I

� ` 2A
h�i ` A

2E

� ` A
h�i ` }A

}I
� ` }A �[hAi] ` B

�[�] ` B
}E

Structure global rules ; } controlled restricted versions, e.g.

A⇧ : (A • B) • }C �! A • (B • }C)

C⇧ : (A • B) • }C �! (A • }C) • B

Multimodal generalization families {}i,2i}i2I for particular structural choices



Encoding dependency structure



Heads vs dependents

Dependency roles articulate the linguistic material on the basis of two oppositions:

I head - complement relations

. verbal domain: subj, (in)direct object, . . .

. nominal domain: prepositional object, . . .

I adjunct - head relations

. verbal domain: (time, manner, . . . ) adverbial

. nominal domain: adjectival, numeral, determiner, . . .

Compare: fa-structure: function vs argument



Heads vs dependents

Dependency roles articulate the linguistic material on the basis of two oppositions:

I head - complement relations

. verbal domain: subj, (in)direct object, . . .

. nominal domain: prepositional object, . . .

I adjunct - head relations

. verbal domain: (time, manner, . . . ) adverbial

. nominal domain: adjectival, numeral, determiner, . . .

Compare: fa-structure: function vs argument

Orthogonality The fa and the dependency articulation are in general not aligned.
This asks for a multidimensional type logic.

E.g. Determiner. Semantically, characteristic function of (JNK, JVPK) relation; mor-
phologically, dependent on head noun.



Defining a headed product

Multimodal generalization families {}d,2d}d2DepLabel

I }dA\C, C/}dB head functor assigning dependency role d to its complement

I 2d(A\C), 2d(C/B) dependent functor projecting adjunct role d

/

AB/}dA

h d

.

}dA\BA

d h

/

A2d(B/A)

d h

.

2d(A\B)A

d h

Example Determiner: 2det(np/n), after projecting its determiner dependency role
it can act as a function of its argument noun.



Extracting types from structured data

Dutch treebank LASSY Annotation DAGs, nodes: synt categories, edges: depen-
dency relations. Re-entrancy: higher-order types.

smain

pp

np

n

skies

lid

the

det hd
vz

in

hd pobj
ww

twitter

np

swallows

su

hd

amod



Extracting types from structured data

Dutch treebank LASSY Annotation DAGs, nodes: synt categories, edges: depen-
dency relations. Re-entrancy: higher-order types.

smain

pp

np

n

skies

lid

the

det hd
vz

in

hd pobj
ww

twitter

np

swallows

su

hd

amod

Extracted types:

swallows : np twitter : }sunp\s in : 2amod(s\s)/}pobjnp the : 2det(np/n) skies : n



Dependency structure

Derivation, N.D. style:

swallows
np

hswallowsisu ` }sunp
}I

twitter

}sunp\s

hswallowsisu · twitter ` s
\E

in

2amod(s\s)/}pobjnp

the

2det(np/n)

htheidet ` np/n
2E skies

n

htheidet · skies ` np
/E

hhtheidet · skiesipobj ` }pobjnp
}I

in · hhtheidet · skiesipobj ` 2amod(s\s)
/E

hin · hhtheidet · skiesipobjiamod ` s\s
2E

(hswallowsisu · twitter) · hin · hhtheidet · skiesipobjiamod ` s
\E



Dependency structure

Derivation, N.D. style:

swallows
np

hswallowsisu ` }sunp
}I

twitter

}sunp\s

hswallowsisu · twitter ` s
\E

in

2amod(s\s)/}pobjnp

the

2det(np/n)

htheidet ` np/n
2E skies

n

htheidet · skies ` np
/E

hhtheidet · skiesipobj ` }pobjnp
}I

in · hhtheidet · skiesipobj ` 2amod(s\s)
/E

hin · hhtheidet · skiesipobjiamod ` s\s
2E

(hswallowsisu · twitter) · hin · hhtheidet · skiesipobjiamod ` s
\E

Induced dependency structure:

swallows twitter in the skies

su det

pobj

amod

; within dependency domain, outgoing arcs from head to (head of) dependents



Benefitting from a multidimensional setup

Kokos Kogkalidis worked on resources and neural tools for parsing Dutch in the mul-
timodal setup:

I Kogkalidis et al 2020a, Æthel: Automatically extracted typelogical derivations
for Dutch. LREC.

I Kogkalidis et al 2020b, Neural proof nets. CoNLL

I Kogkalidis et al 2022, Geometry-Aware Supertagging with Heterogeneous Dy-
namic Convolutions, arXiv

If you want to try things out, see the readme on

https://github.com/konstantinosKokos/lassy-tlg-extraction

for the extracted proofbank

https://github.com/konstantinosKokos/dynamic-proof-nets

for the parser



Parser explained in one slide

Proof net

:`�KK�` amT2`i�;;BM; S�`bBM;

S`QQ7 L2ib RyR
S`QQ7 L2i
� T`QQ7- � T`QQ7 bi`m+im`2 vQm +�M M�pB;�i2
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2/2i

(

M MT

`QH2

M

i?�i

(

�`2H+H 2KQ/

( (
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bbm# MT MT

ivT2b

MT

TH�v

(

�Q#D

T`QM

(

�bm

MT

bbm#

� MT

�
� H

KQ/(i?�i M
`2H+H �tX(TH�v t M

bm ivT2b)) (H/2ii?2 `QH2)

Sinkhorn:`�KK�` amT2`i�;;BM; S�`bBM;

S`QQ7 L2ib Ryk, M2m`�H i?Bb iBK2

*Qbi

MTR

MTj

MT9

MTk MT8 MTeq
:Q�H

MTR

MTj

MT9

MTk MT8 MTe

�

�

�

G�S, 6BM/ #BD2+iBQM 7 : S � L bXiX
�

T2S
*Qbi (T- 7(T)) K�tX

\ #QmM/2/M2bb

, M2;�iBp2 BM i?2 HQ; b+�H2

\ #�+FT`QT

, LGG fr bi`�B;?i@i?`Qm;? 2biBK�iQ`



Probing pt. 2



Handling verb clusters: the ACG approach

I the Abstract Categorial Grammar method

abstract syntax, divergent compositional translations:

d·estring string semantics

d·esem meaning assembly

The ACG method is easily adapted to our NL source: words as abstract constants.

Simple combinatorics, inflated type homomorphism String semantics: higher-order
modelling of tuples

dINFPe = (� ( � ( �) ( � , �(2)

References

I Michael Moortgat, Konstantinos Kogkalidis and Gijs Wijnholds. Diamonds are
Forever: Theoretical and Empirical Support for a Dependency-Enhanced Type
Logic. To appear in: Logic and Algorithms in Computational Linguistics 2021.

I DYI: https://github.com/gijswijnholds/malin 2022



ACG method (cont’d)

Abstract syntax The syntax types don’t yield the surface string, but the closest you
can get using logical rules only.

haar

NP

iets

NP

zeggen

NP\INFP

iets · zeggen ` INFP
\E

laten

INFP\(NP\INFP)

(iets · zeggen) · laten ` NP\INFP

\E

haar · ((iets · zeggen) · laten) ` INFP

\E
willen

INFP\INFP

† (haar · ((iets · zeggen) · laten)) · willen ` INFP

\E



ACG method (cont’d)

Abstract syntax The syntax types don’t yield the surface string, but the closest you
can get using logical rules only.

haar

NP

iets

NP

zeggen

NP\INFP

iets · zeggen ` INFP
\E

laten

INFP\(NP\INFP)

(iets · zeggen) · laten ` NP\INFP

\E

haar · ((iets · zeggen) · laten) ` INFP

\E
willen

INFP\INFP

† (haar · ((iets · zeggen) · laten)) · willen ` INFP

\E

dzeggenestring = �x�f.(f x zeggen) :: � ( �(2)

dwillenestring = �q�f.(q �y�z.(f y willen·z)) :: �(2)
( �(2)

dlatenestring = �q�x�f.(q �z�w.(f x·z laten·w)) :: �(2)
( � ( �(2)

d†estring = �f.(f haar·iets willen·laten·zeggen)
compare d†esem = want (let (say something) her)



Dependency enhancement

function types A\B ; }dA\B vc: verbal complement

haar
np

hhaariobj ` }objnp
}I

iets
np

hietsiobj ` }objnp
}I

zeggen

}objnp\inf

hietsiobj · zeggen ` inf
\E

hhietsiobj · zeggenivc ` }vcinf
}I

laten

}vcinf\(}objnp\inf)

hhietsiobj · zeggenivc · laten ` }objnp\inf
\E

hhaariobj · (hhietsiobj · zeggenivc · laten) ` inf
\E

hhhaariobj · (hhietsiobj · zeggenivc · laten)ivc ` }vcinf
}I

willen

}vcinf\inf

hhhaariobj · (hhietsiobj · zeggenivc · laten)ivc · willen ` inf
\E

(want M
vc((let M

vc(say M
obj something)) M

obj her))



Diamonds are forever

Recap: Doing it the Diamond Way

np

hij
�

hhijisu ` }sunp
[}I]

(}sunp\s)/}vcinf

zal
�

haar
np �

hhaariobj ` }objnp
[}I]

iets
np �

hietsiobj ` }objnp
[}I]

zeggen

}objnp\inf
�

hietsiobj · zeggen ` inf
[\E]

hhietsiobj · zeggenivc ` }vcinf
[}I]

laten

}vcinf\(}objnp\inf)
�

hhietsiobj · zeggenivc · laten ` }objnp\inf
[\E]

hhaariobj · (hhietsiobj · zeggenivc · laten) ` inf
[\E]

hhhaariobj · (hhietsiobj · zeggenivc · laten)ivc ` }vcinf
[}I]

willen

}vcinf\inf
�

hhhaariobj · (hhietsiobj · zeggenivc · laten)ivc · willen ` inf
[\E]

hhhhaariobj · (hhietsiobj · zeggenivc · laten)ivc · willenivc ` }vcinf
[}I]

zal · hhhhaariobj · (hhietsiobj · zeggenivc · laten)ivc · willenivc ` }sunp\s
[/E]

hhijisu · (zal · hhhhaariobj · (hhietsiobj · zeggenivc · laten)ivc · willenivc) ` s
[\E]

ACG all the way

d†estring = hij· zal· haar·iets· willen·laten·zeggen
d†esem = will (want M

vc((let M
vc(say M

obj something)) M
obj her)) M

su he

d†epair = [(zal,hij),(willen,hij),(laten,hij),(zeggen,haar)]

[Moortgat et al., 2022]
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273 abstract samples Each word is a unique instance of a word category, used to
generate many more samples

AST r0 (g0 (g1 d4 (f1 d5 d1) d3) d2)
Surface hij zal haar iets willen laten zeggen
Semantics (zal (}vc(willen }vc((laten }vc(zeggen (}obj1iets))) (}obj1haar))))) (}suhij)
Pairing [(zal, hij), (willen, hij), (laten, hij), (zeggen, haar)]



Populating the lexicon

The lexicon

Doing it the Diamond Way: Populating the lexicon

The lexicon

Category Description Examples

INF0 intransitive infinitive vertrekken, stemmen, verliezen, ...
INF1 transitive infinitive with inanimate object zeggen, begrijpen, merken, ...
INF1A transitive infinitive, animate object ontmoeten, bedanken, kennen, ...

IVR0 obligatory verb raiser willen, zullen, moeten, ...
IVR1 obligatory verb raiser, subject flipper laten, doen
IVR2 non-obligatory verb raiser proberen, weigeren, trachten, ...

INF2 extraposition proberen, weigeren, trachten, ...
INF3 extraposition, object control verzoeken, dwingen, verplichten, ...
INF4 extraposition, subject control beloven, verzekeren, zweren, ...

OBJ1A animate direct object Karin, Wouter, ...
OBJ1I inanimate direct object iets, veel, een ding, ...
OBJ2 indirect object Karin, Wouter, ...

Sources

I Verbs sampled from Algemene Nederlandse Spraakkunst (ans.ruhosting.nl)

I Names samples from the Nederlandse Voornamenbank (www.meertens.knaw.nl/nvb)
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Table 1 Accuracy and baseline results on the validation (Lassy) and test set.

Validation set (Lassy) Test set (generated)

Accuracy 97.60 79.47
Random Baseline 13.24 39.24

which allows us to better tune and adjust the focus of our quantitative analysis. In
Appendix 4 we provide a listing of all verbal categories used through the generation,
together with a short description and a few example lexical items; the list might
prove useful in following along with our analysis in the next few sections.

3.1 Number of Nouns

As a preliminary step, we measure test set performance in relation to the number
of subject candidates in the sentence (i.e. number of nouns), which we imagine can
confound the model’s ability to make a correct semantic judgement, and present our
results in Table 2.

Table 2 Accuracy results by number of nouns.

Number of nouns 2 3 4

Accuracy 86.87 75.66 68.76
Random Baseline 50.00 33.33 25.00

As expected, the accuracy does indeed show a correlation to the number of
attractors. The correlation is, however, rather weak; accuracy is surprisingly low in
comparison to the validation set even in the presence of a single attractor, and only
moderately declines as they increase, remaining consistently high above the random
baseline.

3.2 Verbal Type

Since the number of nouns is not that telling of a feature in distinguishing correct
versus erroneous predictions, the next thing to group results by by is the type of
verb under inspection. We distinguish nine verb categories, displayed in Table 9
in the Appendix. The verb categories we subdivide in three groups: first, there are
infinitives that do not select for a verbal complement, which we refer to as plain
infintives (INF0, INF1, INF1A) and that differ in their transitivity, i.e. selecting only
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Accuracy 97.60 79.47
Random Baseline 13.24 39.24

which allows us to better tune and adjust the focus of our quantitative analysis. In
Appendix 4 we provide a listing of all verbal categories used through the generation,
together with a short description and a few example lexical items; the list might
prove useful in following along with our analysis in the next few sections.

3.1 Number of Nouns

As a preliminary step, we measure test set performance in relation to the number
of subject candidates in the sentence (i.e. number of nouns), which we imagine can
confound the model’s ability to make a correct semantic judgement, and present our
results in Table 2.

Table 2 Accuracy results by number of nouns.

Number of nouns 2 3 4

Accuracy 86.87 75.66 68.76
Random Baseline 50.00 33.33 25.00

As expected, the accuracy does indeed show a correlation to the number of
attractors. The correlation is, however, rather weak; accuracy is surprisingly low in
comparison to the validation set even in the presence of a single attractor, and only
moderately declines as they increase, remaining consistently high above the random
baseline.

3.2 Verbal Type

Since the number of nouns is not that telling of a feature in distinguishing correct
versus erroneous predictions, the next thing to group results by by is the type of
verb under inspection. We distinguish nine verb categories, displayed in Table 9
in the Appendix. The verb categories we subdivide in three groups: first, there are
infinitives that do not select for a verbal complement, which we refer to as plain
infintives (INF0, INF1, INF1A) and that differ in their transitivity, i.e. selecting only

By number of nouns Again, the more nouns, the more challenging the test case:
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Table 1 Accuracy and baseline results on the validation (Lassy) and test set.

Validation set (Lassy) Test set (generated)

Accuracy 97.60 79.47
Random Baseline 13.24 39.24

which allows us to better tune and adjust the focus of our quantitative analysis. In
Appendix 4 we provide a listing of all verbal categories used through the generation,
together with a short description and a few example lexical items; the list might
prove useful in following along with our analysis in the next few sections.

3.1 Number of Nouns

As a preliminary step, we measure test set performance in relation to the number
of subject candidates in the sentence (i.e. number of nouns), which we imagine can
confound the model’s ability to make a correct semantic judgement, and present our
results in Table 2.

Table 2 Accuracy results by number of nouns.

Number of nouns 2 3 4

Accuracy 86.87 75.66 68.76
Random Baseline 50.00 33.33 25.00

As expected, the accuracy does indeed show a correlation to the number of
attractors. The correlation is, however, rather weak; accuracy is surprisingly low in
comparison to the validation set even in the presence of a single attractor, and only
moderately declines as they increase, remaining consistently high above the random
baseline.

3.2 Verbal Type

Since the number of nouns is not that telling of a feature in distinguishing correct
versus erroneous predictions, the next thing to group results by by is the type of
verb under inspection. We distinguish nine verb categories, displayed in Table 9
in the Appendix. The verb categories we subdivide in three groups: first, there are
infinitives that do not select for a verbal complement, which we refer to as plain
infintives (INF0, INF1, INF1A) and that differ in their transitivity, i.e. selecting only

By verbal type Extraposition easier than raisers, as there is no cluster. Infinitives
even worse, most likely because they appear at long distance.

Raising, Extraposition, and Infinitives

Raising

OBJ2 OBJI
1 IVR0 IVR1 INF1

hij zal haar iets willen laten zeggen
he will her something want let say

Extraposition

OBJ2 INF3 OBJI
1 TE INF1

hij zal haar dwingen iets te zeggen
he will her force something to say

By verbal type Extraposition slightly easier, as there is no cluster. Infinitives are
worse, because they typically are far removed from their understood subjects:

6 Name of First Author and Name of Second Author

a subject or additionally an object, and their selectional preferences (animate vs.
inanimate objects). Next, we group three categories of verb raisers (IVR0, IVR1,
IVR2), that induce a semantically discontinuous cluster. Finally, we distinguish
extraposition verbs (INF2, INF3, INF4) that arrange their arguments in a continuous
order, distinguishing between object control (INF3), subject control (INF4) and
non-control (INF2) verbs.

Table 3 Accuracy results by verbal type.

Verbal type Raising Extraposition Infinitive

Accuracy 81.00 87.03 68.77
Random 39.86 38.27 39.24

Table 3 indicates that the verbal type is a stronger indicator of model performance:
accuracy varies between types despite the baselines being comparable. Infinitives
governing raising constructions are harder to disentangle compared to their extra-
posing relatives, and infinitives are remarkably worse off than either. We provide a
further specification of accuracy broken down by individual verb categories in Table
10, but note that these results do not show a striking difference between individual
verb categories.

3.3 Verb Dominance

To tell what exactly it is that makes infinitives so difficult for BERTje to understand,
we filter predictions of verbs that occur in the context of a nested subordinate clause,
and group them first by the type of the clause’s governing verb, and afterwards by
the type of the dependent verb.

Table 4 Accuracy results by dominance, distinguishing verb raisers and extraposition verbs.

Dominated verb, grouped by verbal type

Dominated by raising Overall Raising Extraposition Infinitive

Accuracy 76.18 76.23 77.76 74.68
Random Baseline 39.86 41.23 38.60 39.76

Dominated by extraposition

Accuracy 66.70 67.35 85.35 59.62
Random Baseline 38.27 38.60 36.84 38.30



Results (2/3)

Dominance

Verb Dominance

Dominance

OBJ2 OBJI
1 IVR0 IVR1 INF1

hij zal haar iets willen laten zeggen
he will her something want let say

INF2 OBJ2 OBJI
1 TE IVR1 INF1

hij zal proberen haar iets te laten zeggen
he will try her something to let say

Results Verbs under the scope of an extraposition verb are more challenging!

6 Name of First Author and Name of Second Author

a subject or additionally an object, and their selectional preferences (animate vs.
inanimate objects). Next, we group three categories of verb raisers (IVR0, IVR1,
IVR2), that induce a semantically discontinuous cluster. Finally, we distinguish
extraposition verbs (INF2, INF3, INF4) that arrange their arguments in a continuous
order, distinguishing between object control (INF3), subject control (INF4) and
non-control (INF2) verbs.

Table 3 Accuracy results by verbal type.

Verbal type Raising Extraposition Infinitive

Accuracy 81.00 87.03 68.77
Random 39.86 38.27 39.24

Table 3 indicates that the verbal type is a stronger indicator of model performance:
accuracy varies between types despite the baselines being comparable. Infinitives
governing raising constructions are harder to disentangle compared to their extra-
posing relatives, and infinitives are remarkably worse off than either. We provide a
further specification of accuracy broken down by individual verb categories in Table
10, but note that these results do not show a striking difference between individual
verb categories.

3.3 Verb Dominance

To tell what exactly it is that makes infinitives so difficult for BERTje to understand,
we filter predictions of verbs that occur in the context of a nested subordinate clause,
and group them first by the type of the clause’s governing verb, and afterwards by
the type of the dependent verb.

Table 4 Accuracy results by dominance, distinguishing verb raisers and extraposition verbs.

Dominated verb, grouped by verbal type

Dominated by raising Overall Raising Extraposition Infinitive

Accuracy 76.18 76.23 77.76 74.68
Random Baseline 39.86 41.23 38.60 39.76

Dominated by extraposition

Accuracy 66.70 67.35 85.35 59.62
Random Baseline 38.27 38.60 36.84 38.30

Governed verbs

Verb Dominance

An orthogonal view we distinguish the di↵erent subcategories of verbs that govern
other verbs:
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Table 4 displays the aggregated accuracy scores. As before, we observe a lower
overall accuracy in infinitives under an extraposition construction. Despite an ex-
traposing verb being easier to pair to its subject compared to a raising one, verbs
under the immediate scope of an extraposition are in fact harder to identify correctly!
Along the same lines, the disproportionately low performance in the infinitive verbs
of Table 3 is now explained by a striking performance drop (ca 20%) in the case
of the governing verb being an extraposer. What is making the territory muddier,
however, is an inverse trend in the case of an extraposition under the case of an
extraposition.

To add to the story, we separately subdivide the overall accuracy for all verbs
governed by a raiser or extraposition verb, into the specific categories that make up
the raisers and extraposition verbs, in order to offer an orthogonal view on the same
problem. The numbers in Table 5 display accuracy results for each subcategory for
raisers and extraposition verbs.

Table 5 Accuracy results by dominance, for verb raisers and extraposition verbs, where the overall
accuracy is broken down by individual categories.

Dominating verb, by subcategory

Dominated by raising Overall IVR0 IVR1 IVR2

Accuracy 76.18 78.54 71.41 77.95
Random Baseline 39.86 41.06 37.09 41.05

Dominated by extraposition Overall INF2 INF3 INF4

Accuracy 66.70 86.74 57.12 47.12
Random Baseline 38.27 42.58 35.13 35.13

The results suggest that it is not extraposition per se that is the problem; if
anything, performance is higher for clauses in an extraposition setting under the
INF2 category rather than a clustering setting under the IVR2 category, despite the
two sharing the same lexical vocabulary! The problem, rather, lies in the semantic
control properties exhibited by the control verbs in categories INF3 (object control)
and INF4 (subject control).

3.3.1 Subject versus object control

To further deepen the analysis, we perform a variation on the main experiment. In
this setup, we gather all pairs of sentences that differ only in the choice of a subject
control verb (INF4) or an object control verb (INF3). Such cases are syntactically
equivalent, however the control properties of the verb mean that either their subject or
their indirect object gets selected as the understood subject in the verbal complement,
leading to a different expected prediction of subjecthood for the verb that is under

It’s all about control

OBJ2 INF4/INF3 OBJI
1 TE INF1

hij zal haar beloven/dwingen iets te zeggen
he will her promise/force something to say

I Accuracy declines for verbs governed by a subject flipping verb raiser (IVR1)

I Under an extraposition verb, control verbs (INF3/INF4) are the challenging ones.



Results (3/3)

Semantic equivalence comparing samples with a di↵erent AST and surface realiza-
tion, but identical semantics:

Word order variations

Semantic equivalence We can group samples that originate from di↵erent ASTs,
have identical semantics, but di↵erent surface realizations:
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Table 7 Accuracy results by number of preceding flips.

Number of preceding flips 0 1 2

Accuracy 86.80 68.47 53.57
Random 40.27 38.46 29.17

The results in the table, as anticipated, show that accuracy drops in the presence
of subject flips. This corroborates our previous hypothesis that the semantics of
control verbs (and those of the subject flipping verb raisers ‘laten’ and ’doen’)
induce linguistically complex cases, that are in turn challenging for the language
model to analyze.

3.4 Semantic Equivalence, Syntactic Variation

Our dataset contains verbs that necessarily induce a cluster or extraposition construc-
tion, but also verbs that may induce either. The latter are of particular interest, as
they produce drastically differing abstract syntax trees, that in turn get materialized
as distinct permutations of the same lexical items, but with identical meanings, i.e.
semantic terms; see Example (2) below.

(2) a. hij
he

zal
will

haar
her

proberen[IVR2]
try

te
to

willen
want

ontmoeten
meet

b. hij
he

zal
will

proberen[INF2]
try

haar
her

te
to

willen
want

ontmoeten
meet

‘he will try to want to meet her’

To examine whether the model exhibits a preference towards either of the two con-
structions, we identify samples that get assigned identical semantic terms (modulo
the IVR2/INF2 distinction), differing only in the word order of their respective sur-
face forms. Across all such pairs, we aggregate accuracy and baseline scores based
on the construction type (raising or extraposition), and the position of each inspected
verb within the AST (that being the ambiguous verb itself, or a verb occurring above
or below it in the tree).

The results in Table 8 solidify our previous evidence that extraposition contexts
are overall easier for the model to resolve, regardless of the syntactic position of the
verb under scrutiny.

Results Extra confirmation that extraposition is the easier construction to recognize.

10 Name of First Author and Name of Second Author

Table 8 Accuracy results for raising vs. extraposition constructions, with identical semantic terms.

Context in the sentence

Raising construction Above Verb Below

Accuracy 95.09 86.22 78.15
Random Baseline 42.54 41.47 41.44

Extraposition construction

Accuracy 96.49 93.04 78.50
Random Baseline 42.54 41.48 41.44

4 Conclusion
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tion vs raising vs control),



Summary, Discussion

I Dutch BERT does not seem to inherently capture verb-subject dependencies very
well (in verb clusters),

I Specific verb categories introduce their own complexity to the model (extraposi-
tion vs raising vs control),

What’s next

I Going multilingual, using the same abstract syntax to generate surface forms in
several languages, e.g.

Ik weet dat Jan Marie de kinderen ziet leren fietsen
Ich weiß dass Jan Marie die Kinder fahren lernen sieht
I know that John sees Mary teach the children to cycle

. Challenge: finding the appropriate (aligned) training data



Probing ellipsis

Our research

This work outlines an approach to identify 
noun-verb dependencies in Dutch sentences 
with verb phrase (VP) ellipsis and noun 
phrase (NP) ellipsis using BERTje to quantify 
BERT’s linguistic capacity. We train a probe
model to identify these noun-verb
dependencies, whereafter the model is tested
on sentences that are generated using a 
Context-Free Grammar (CFG).

Ellipsis

A construction refers to being elliptical when
a word or group of words is deliberately left
out of a sentence without changing its
original meaning. Information retrieved from
context is omitted from a sentence. Dots
occasionally mark ellipses. 

Verb and Noun Phrase Ellipsis in Dutch: Identifying Verb-
Subject Dependencies Using a Probe Model
Keywords: Ellipsis; BERTje; Dependency; Probing; Dutch; CFG
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CNJ

De vrouw fietst en de man ook
DET SUBJ VB SUBJDET ADV
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---
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WW 
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Previous work

Kogkalidis & Wijnholds (2022) evaluated the
syntactic capacity of BERT in the context of 
control verb clustering and verb raising. They
found that BERT struggles with complex 
syntactic structures. We wanted to see how
BERT performs in these contexts; can it
uncover subject-verb dependencies when
some verbs and subjects are elided?

Limitations
The sentences 
generated by the 
grammar are not 
natural; it would be a 
possibility for future 
work to improve this.

Future work
An interesting
extension of this
research in future work
is looking at different 
languages and different 
types of ellipsis. For 
example, besides noun 
phrases and verb 
phrases, there are 
many types of ellipsis, 
such as pseudogapping.

Discussion and Conclusion

These results show that the probe is very 
good since the Lassy sentences have an 
accuracy of 98,9%. The sentences from our 
grammar baseline, where there are no 
ellipsis, have only 86,9%. This is a big 
difference, where it is clear the probe is 
better with the natural language than the 
generated sentences. Furthermore, the 
sentences with NP-ellipsis are better than 
those without them, with an accuracy of 
92,5%. The probe is worst with VP-ellipsis 
since it only has an accuracy of 79,2%. The 
result that stands out is the very low recall 
for VP-ellipsis, so we can conclude the probe 
is not complete in finding the VP-ellipsis.
The big difference in detecting the subject-
verb dependencies for the NP- and VP-
ellipsis could be due to the former being 
more common in the Lassy training data.

Metric VP ellipsis
created
with CFG

NP ellipsis
created
with CFG

Precision 0.782 0.912

Recall 0.352 0.775

F1 0.486 0.838

Accuracy 0.792 0.925

True baseline 0.279 0.205

False baseline 0.721 0.795

Results
Sentences
without 
ellipsis

Sentences
created
with CFG

Sentences
from Lassy

Precision 0.574 0.872

Recall 0.741 0.911

F1 0.647 0.891

Accuracy 0.869 0.989

True baseline 0.161 0.048

False baseline 0.838 0.952

Probe model

The probe model takes the generated
sentence from the grammar (CFG) and
selects the noun and verb phrases. Then, 
the attention mask creates a dot product
from each noun and verb phrase so that we 
obtain a matrix of scores. The final matrix is 
obtained by applying a Sigmoid function to 
it, which bounds the outputs between 0 and 
1. This ensures that if a score is closer to 1 
then the verb and noun are linked, otherwise 
they are not.

This way, we have a clear mapping between 
nouns and verbs, which allows us to link 
missing verbs to noun phrases (unlike the 
Softmax function, previously used in the 
original probe).
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Back to the bigger picture

Take away

I Large-scale Language Models are a staple in the NLP toolkit, despite limited
knowledge about their ‘intelligence’.

I Using techniques from formal grammar, we can show that they have limited
capabilities for linguistic ‘understanding’.

Going further

I Compositional generalization: how can LMs generalize, e.g. on objectives like
negation, monotonicity? Yanaka et al. [2019], Wijnholds [2023]

I Data/scale: what can we do about data bias, pretraining objectives, to create
more e�cient models?

I Hybrid models: in what way can we harness the power of LMs and combine them
formal representations?



The robots are not coming (yet)



Thank you!
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